Real Data Analysis
FASHION MNIST with Python (DAY 5) - knn
딥스탯
2018. 8. 19. 19:55
FASHION MNIST with Python (DAY 5)¶
DATA SOURCE : https://www.kaggle.com/zalando-research/fashionmnist (Kaggle, Fashion MNIST)
FASHION MNIST with Python (DAY 1) : http://deepstat.tistory.com/35
FASHION MNIST with Python (DAY 2) : http://deepstat.tistory.com/36
FASHION MNIST with Python (DAY 3) : http://deepstat.tistory.com/37
FASHION MNIST with Python (DAY 4) : http://deepstat.tistory.com/38
Datasets¶
Importing numpy, pandas, pyplot¶
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
Loading datasets¶
In [2]:
data_train = pd.read_csv("..\\datasets\\fashion-mnist_train.csv")
data_test = pd.read_csv("..\\datasets\\fashion-mnist_test.csv")
In [3]:
data_train_y = data_train.label
y_test = data_test.label
In [4]:
data_train_x = data_train.drop("label",axis=1)/256
x_test = data_test.drop("label",axis=1)/256
Spliting valid and training¶
In [5]:
np.random.seed(0)
valid2_idx = np.random.choice(60000,10000,replace = False)
valid1_idx = np.random.choice(list(set(range(60000)) - set(valid2_idx)),10000,replace=False)
train_idx = list(set(range(60000))-set(valid1_idx)-set(valid2_idx))
x_train = data_train_x.iloc[train_idx,:]
y_train = data_train_y.iloc[train_idx]
x_valid1 = data_train_x.iloc[valid1_idx,:]
y_valid1 = data_train_y.iloc[valid1_idx]
x_valid2 = data_train_x.iloc[valid2_idx,:]
y_valid2 = data_train_y.iloc[valid2_idx]
K-Nearest Neighbors¶
Importing KNeighborsClassifier¶
In [6]:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
Fitting KNN with k=1¶
In [7]:
KNN_model_type_1 = KNeighborsClassifier(n_neighbors=1).fit(x_train, y_train)
Training Accuracy¶
In [8]:
confusion_matrix(KNN_model_type_1.predict(x_train),y_train)
Out[8]:
In [9]:
KNN_model_type_1_train_acc = (KNN_model_type_1.predict(x_train) == y_train).mean()
print("TRAINING ACCURACY =",KNN_model_type_1_train_acc)
Validation Accuracy¶
In [10]:
confusion_matrix(KNN_model_type_1.predict(x_valid1),y_valid1)
Out[10]:
In [11]:
KNN_model_type_1_valid1_acc = (KNN_model_type_1.predict(x_valid1) == y_valid1).mean()
print("VALIDATION ACCURACY =",KNN_model_type_1_valid1_acc)
In [12]:
{"TRAIN_ACC" : KNN_model_type_1_train_acc , "VALID_ACC" : KNN_model_type_1_valid1_acc}
Out[12]:
Fitting KNN with k=2¶
In [13]:
KNN_model_type_2 = KNeighborsClassifier(n_neighbors=2).fit(x_train, y_train)
Training Accuracy¶
In [14]:
confusion_matrix(KNN_model_type_2.predict(x_train),y_train)
Out[14]:
In [15]:
KNN_model_type_2_train_acc = (KNN_model_type_2.predict(x_train) == y_train).mean()
print("TRAINING ACCURACY =",KNN_model_type_2_train_acc)
Validation Accuracy¶
In [16]:
confusion_matrix(KNN_model_type_2.predict(x_valid1),y_valid1)
Out[16]:
In [17]:
KNN_model_type_2_valid1_acc = (KNN_model_type_2.predict(x_valid1) == y_valid1).mean()
print("VALIDATION ACCURACY =",KNN_model_type_2_valid1_acc)
In [18]:
{"TRAIN_ACC" : KNN_model_type_2_train_acc , "VALID_ACC" : KNN_model_type_2_valid1_acc}
Out[18]:
Fitting KNN with k=3¶
In [19]:
KNN_model_type_3 = KNeighborsClassifier(n_neighbors=3).fit(x_train, y_train)
Training Accuracy¶
In [20]:
confusion_matrix(KNN_model_type_3.predict(x_train),y_train)
Out[20]:
In [21]:
KNN_model_type_3_train_acc = (KNN_model_type_3.predict(x_train) == y_train).mean()
print("TRAINING ACCURACY =",KNN_model_type_3_train_acc)
Validation Accuracy¶
In [22]:
confusion_matrix(KNN_model_type_3.predict(x_valid1),y_valid1)
Out[22]:
In [23]:
KNN_model_type_3_valid1_acc = (KNN_model_type_3.predict(x_valid1) == y_valid1).mean()
print("VALIDATION ACCURACY =",KNN_model_type_3_valid1_acc)
In [24]:
{"TRAIN_ACC" : KNN_model_type_3_train_acc , "VALID_ACC" : KNN_model_type_3_valid1_acc}
Out[24]:
Fitting KNN with k=5¶
In [25]:
KNN_model_type_4 = KNeighborsClassifier(n_neighbors=5).fit(x_train, y_train)
Training Accuracy¶
In [26]:
confusion_matrix(KNN_model_type_4.predict(x_train),y_train)
Out[26]:
In [27]:
KNN_model_type_4_train_acc = (KNN_model_type_4.predict(x_train) == y_train).mean()
print("TRAINING ACCURACY =",KNN_model_type_4_train_acc)
Validation Accuracy¶
In [28]:
confusion_matrix(KNN_model_type_4.predict(x_valid1),y_valid1)
Out[28]:
In [29]:
KNN_model_type_4_valid1_acc = (KNN_model_type_4.predict(x_valid1) == y_valid1).mean()
print("VALIDATION ACCURACY =",KNN_model_type_4_valid1_acc)
In [30]:
{"TRAIN_ACC" : KNN_model_type_4_train_acc , "VALID_ACC" : KNN_model_type_4_valid1_acc}
Out[30]:
Fitting KNN with k=8¶
In [31]:
KNN_model_type_5 = KNeighborsClassifier(n_neighbors=8).fit(x_train, y_train)
Training Accuracy¶
In [32]:
confusion_matrix(KNN_model_type_5.predict(x_train),y_train)
Out[32]:
In [33]:
KNN_model_type_5_train_acc = (KNN_model_type_5.predict(x_train) == y_train).mean()
print("TRAINING ACCURACY =",KNN_model_type_5_train_acc)
Validation Accuracy¶
In [34]:
confusion_matrix(KNN_model_type_5.predict(x_valid1),y_valid1)
Out[34]:
In [35]:
KNN_model_type_5_valid1_acc = (KNN_model_type_5.predict(x_valid1) == y_valid1).mean()
print("VALIDATION ACCURACY =",KNN_model_type_5_valid1_acc)
In [36]:
{"TRAIN_ACC" : KNN_model_type_5_train_acc , "VALID_ACC" : KNN_model_type_5_valid1_acc}
Out[36]:
Fitting KNN with k=12¶
In [37]:
KNN_model_type_6 = KNeighborsClassifier(n_neighbors=12).fit(x_train, y_train)
Training Accuracy¶
In [38]:
confusion_matrix(KNN_model_type_6.predict(x_train),y_train)
Out[38]:
In [39]:
KNN_model_type_6_train_acc = (KNN_model_type_6.predict(x_train) == y_train).mean()
print("TRAINING ACCURACY =",KNN_model_type_6_train_acc)
Validation Accuracy¶
In [40]:
confusion_matrix(KNN_model_type_6.predict(x_valid1),y_valid1)
Out[40]:
In [41]:
KNN_model_type_6_valid1_acc = (KNN_model_type_6.predict(x_valid1) == y_valid1).mean()
print("VALIDATION ACCURACY =",KNN_model_type_6_valid1_acc)
In [42]:
{"TRAIN_ACC" : KNN_model_type_6_train_acc , "VALID_ACC" : KNN_model_type_6_valid1_acc}
Out[42]:
Fitting KNN with k=17¶
In [43]:
KNN_model_type_7 = KNeighborsClassifier(n_neighbors=17).fit(x_train, y_train)
Training Accuracy¶
In [44]:
confusion_matrix(KNN_model_type_7.predict(x_train),y_train)
Out[44]:
In [45]:
KNN_model_type_7_train_acc = (KNN_model_type_7.predict(x_train) == y_train).mean()
print("TRAINING ACCURACY =",KNN_model_type_7_train_acc)
Validation Accuracy¶
In [46]:
confusion_matrix(KNN_model_type_7.predict(x_valid1),y_valid1)
Out[46]:
In [47]:
KNN_model_type_7_valid1_acc = (KNN_model_type_7.predict(x_valid1) == y_valid1).mean()
print("VALIDATION ACCURACY =",KNN_model_type_7_valid1_acc)
In [48]:
{"TRAIN_ACC" : KNN_model_type_7_train_acc , "VALID_ACC" : KNN_model_type_7_valid1_acc}
Out[48]:
Fitting KNN with k=23¶
In [49]:
KNN_model_type_8 = KNeighborsClassifier(n_neighbors=23).fit(x_train, y_train)
Training Accuracy¶
In [50]:
confusion_matrix(KNN_model_type_8.predict(x_train),y_train)
Out[50]:
In [51]:
KNN_model_type_8_train_acc = (KNN_model_type_8.predict(x_train) == y_train).mean()
print("TRAINING ACCURACY =",KNN_model_type_8_train_acc)
Validation Accuracy¶
In [52]:
confusion_matrix(KNN_model_type_8.predict(x_valid1),y_valid1)
Out[52]:
In [53]:
KNN_model_type_8_valid1_acc = (KNN_model_type_8.predict(x_valid1) == y_valid1).mean()
print("VALIDATION ACCURACY =",KNN_model_type_8_valid1_acc)
In [54]:
{"TRAIN_ACC" : KNN_model_type_8_train_acc , "VALID_ACC" : KNN_model_type_8_valid1_acc}
Out[54]: